An Industry Perspective on the Application of Modeling to Lyophilization Process Scale up and transfer

10 January 2017 PepTalk Serguei Tchessalov, Pfizer Inc

Contributing authors

- David Latshaw, Janssen
- Suresh Nulu, Biogen
- Cherie Parkhurst-Lang, Biogen
- Geetha Govindan, Biogen
- Dawood Dassu, BPOG

Outline

- Results of survey on the use of modeling in lyophilization process development
- Examples of primary and secondary drying models
- Primary drying model with scale up features
- Examples of applications of the scale up model
- <u>Computational Fluid Dynamics modeling</u>
- Next steps

Modeling of Drying of a slab (M. Karel, 1975)

Heat transfer through frozen laver. mass transfer through dry layer

 $p_i = p_s + (k_i/b\Delta H_s) (x_d/x_i) (T_w - T_i)$

$$\int_{0}^{L} \frac{x_{d}}{f(x_{d}) - p_{s}} dx_{d} = \frac{b}{\rho(m_{0} - m_{f})} \int_{0}^{t_{d}} dt$$

Equations can be only solved by numerical methods using a *computer*

CHAMBER

SURFACE

HEATED

Karel M. Heat and mass transfer in freeze-drying//Freeze-drying and advanced food technology, Ed. By Goldblith et al, London ,Academic

Vial Freeze-Drying (M. Pikal, 1985)

W5816

8

WORLDWIDE RESEARCH & DEVELOPMENT

Mannitol (5%)

Steady state heat and mass transfer model												
$\left(\frac{R_p}{A_p} + R_s + nR_{tr}\right)\frac{dm}{dt} - P_0 + P_c = 0$												
$R_S \frac{dm}{dt} - P_v + P_{tr} = 0 \qquad nR_{tr} \frac{dm}{dt} - P_{tr} + P_c = 0$												
$0.1833 \frac{dm}{dt} \left[\frac{1}{A_v K_v} + \frac{ATV}{K_{tr}} + \frac{(l_m - l)}{A_p K_I} \right] - T_S + T = 0$												
$0.1833 \frac{dm}{dt} \frac{1}{A_v K_v} - T_t + T_b = 0 \qquad 0.1833 \frac{dm}{dt} \frac{1}{ATVK_{tr}} - T_S + T_t = 0$												
$P_o = 2.6983 * 10^{10} \exp(\frac{-6144.96}{T})$												
$l = \frac{nl_m}{5}$	$l = \frac{nl_m}{5} \qquad \Delta t_j = \frac{\Delta m}{\binom{dm_j}{dt}} = \frac{\rho_I \Delta l A_p \varepsilon}{\binom{dm_j}{dt}} \qquad t_j = \sum_{j=1}^i \Delta t_j \qquad \text{Pc=const, Ts=const}$											
Product	Vial Fill, ml		Tshelf, °C	Pc (Torr)	Tin h	ne, rs	Product temperatur °C					
					Exp.	Calcul.	Exp.	Calcul.				
PVP (5%)	W5816	8	-5	0.1	25.8	26.9	-25.3	-24.6				
Mannitol (5%)	W5816	8	-5	0.1	33.4	34.8	-20.2	-18.5				
Mannitol (5%)	W5816	8	15	0.1	19.2	19.1	-14.2	-11.8				

15

M.Pikal (1985) Use of laboratory data in freeze-drying process design: heat and mass transfer coefficients and the computer simulation of freeze-drying, J. of Parenteral Science and Technology, Vol.39, No.3/May-June, 115-139.

14.0

15.8

-11.9

0.4

rature,

-8.0

Vial Freeze-Drying (M. Pikal, 1985) - continued

Figure 8—Effect of product temperature on drying time: chamber pressure 0.1 mmHg; 5800W vials; 8 ml fill volume: □, 5% mannitol; 0, DOBUTREX; Δ, 5% *PVP*.

Figure 10—Effect of shelf temperature on drying time of 5% (w/w) mannitol: $P_o = 0.10$ mmHg; fill volume, 8 ml: \Box , 5800W; \diamond , 5303; \triangle , 5303 (maximum warp tray).

WORLDWIDE RESEARCH & DEVELOPMENT

, Impact of Tsh on Tproduct (max)

Figure 9—Effect of shelf temperature on maximum product temperature of 5% (w/w) mannitol; $P_c = 0.10$ mmHg; fill volume, 8 ml: \Box , 5800W; \diamond , 5303; Δ , 5303 (maximum warp tray).

Figure 11—Effect of chamber pressure on drying time of 5% (w/w) mannitol; shelf temperature, 0 °C; fill volume, 8 mi: D, 5800W; ¢, 5303; △, 5303 (maximum warp tray).

Non-Steady State Modeling of Freeze-Drying (M. Pikal, 2005) / Passage

Akay, H. U. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications. Pharm. Dev. and Technol. 2005, 10(1):17-32.

60

An Iterative Tool for Optimization of Freeze-Drying (Trelea et al., INRA, France)

FIG. 5. Dynamic model validation. Formulation: PS. (A) Shelf temperature at -25° C and total chamber pressure at 10 Pa during primary drying. (B) Shelf temperature at $+25^{\circ}$ C and total chamber pressure at 34 Pa during primary drying. Measured values (o) and model predictions (–).

I.C.Trelea, S. Passot, F. Fonseca, M. Martin. An interactive tool for the optimization of freeze-drying cycles based on quality criteria, *Drying Technology*, 2007, 25:741-751.

Power of Modeling: Summary to Date

- Models have been established for all three steps of freeze-drying:
 - Freezing (only few examples are shown in literature, there is no commercially available model)
 - Primary drying (Passage model, few variations of lyo calculator (Excel), one with elements of scale up included)
 - Secondary drying (Passage model, Excel based model is almost ready (Pikal & Sahni)
- Models could predict product temperature profile and link it to CQA's (S.Passot, Garmish, 2010)
- A commercially available model (Passage models) as well as an iterative tool for cycle optimization (Trelea et al., 2007) offered to users
- Few proprietary models, developed by companies (Pfizer, Roche, Merck)

BPOG Lyophilization Collaboration

- BPOG has been facilitating industry-led collaborations since 2006.
- The Lyophilisation collaboration started in 2014.
- 13 of the member companies below are participating in the Lyophilization collaboration.
 BPOG Fill Finish Forum, Member Companies

Value of the collaboration:

- Ensure 'minimum standards' are being followed 'peer reviewed'
- Consolidate best practices with transparency not just what's published .
- Fasier for agencies to manage regulation 'single best practice approach'.

Use of Modelling in the Industry (in the 13 collaborating companies)

- Lyophilization process consists of three steps: freezing, primary drying and secondary drying.
- Five companies routinely use primary drying model for process design, optimization and scale up.
- No freezing or secondary drving models being used:
 No of application case-studies
 Process development
 Scale up / Tech transfer
- Mainly, based on the steady state model of primary drying based on heat and mass transfer equations (M.Pikal, 1982, 1985)
- Single vial, 2D steady state heat-mass transfer model. Reference Tsinontides, Rajniak (1999-2001)

Process development	5
Scale up / Tech transfer	5
Deviation analysis and decision making	2
Process optimization	5
Providing suitable information to Regulatory bodies	1

Goals of the collaboration

Goals	Current Status	Next steps
A harmonized best practice approach to modelling at the commercial scale.	 A harmonized approach at a principle level is agreed for a Primary Stage Drying Model (based on Pikal's Heat Mass Transfer for the Primary Drying Stage) Companies may continue with different 'branch' models 	 Agree how to estimate model parameters Share new examples Publish white papers Develop guidelines Engage regulatory authorities Continue to share implementation experiences

Excel Based Primary Drying Model

$$\frac{\partial m}{\partial t} = \frac{S_{in} * (P_{Subl} - P_{Chamber})_i}{R(h)_i} = \frac{S_{out} * K_V(P) * (T_{Shelf} - T_{product})}{\Delta H_S}$$

1. Assumption – All heat received by product is used only for sublimation of water. Sublimation front moves from the top of cake parallel to the vial bottom.

2. Assumption – The contribution of radiation component to the vial heat transfer coefficient is constant within entire operation temperature range

 T_{shelf} and $P_{chamber}$ could vary as function of time, as well as R(h)

$$P_{1}(t_{i}) = (P_{chamber})_{i} + R(h)_{i} 3600(\frac{d_{out}}{d_{in}})^{2} K_{V}(P)_{i}(T_{shelf} - T_{product_bottom})_{i} \frac{1}{\Delta H_{s}}$$

$$P_2(t_i) = \exp(24.01849 - \frac{6144.96}{T_{subl_surf} + 273})$$

$$T_{subl_surf} = T_{produc_bottom} - K_V(P_{ch})(T_{shelf} - T_{produc_bottom}) \frac{h_{frozen} - h_i}{\lambda_{frozen}}$$

$$Sum = \sum_{i=1}^{l} (P_1 - P_2)_i^2 \rightarrow 0$$
 By varying $\mathsf{T}_{\mathsf{product}}$

$$PRM(\%) = \frac{m(t_i)}{\varepsilon \rho V} 100 = 100\%$$

Excel Based Primary Drying Calculation Template (lyo calculator)

Calculation of tempera	ture profile based on p	roduct propertises	and vials cha	racteristics									
Input parameters	Formulation com	ponents	vial heat trai	nsfer coefficien	nt cake res	sistance data	S	ublimation	rate (max N	Minimal control	able press	re	
vial capacity,ml	2	Component	Concentration	Kv=a+b*P(T	orr)/(1+c*P(To	rr)) R=A+B'	h(cm)/(1+C*h	(cm)) S	R(kg/hr)ma	a)	ch(cur)min,m	150	
Din,cm	1.391	Protein	50	а	5.323E-05	A	0	S	Rmax	2.72036	Pmin	56.34166	
Dout,cm	1.587	mannitol	40	b	5.58E-03	B	55.8382	S	R allowed	3.3	A	5.12	
Ice density,g/cm^3	0.918	sucrose	10	с	5.8535	C	0				В	19 920	
Density,g/cm^3	1.03	buffer	1 552	Heat rad.	1						C	0	
Fill volume	1			(edge)		GMP fa	ctor 1						
Water content	0.898448			Kv fe	or lab scale dry	yer							
dry cake,cm	0.738330432												
Number of vials,N	19000												
Tcritical (collapse)	-7												
Lambda	0.00358					Sum	2.1E-07						
				Г									
					10				- 100				
	Process parameters												
								_	90				
		Heat transfer	Shelf		0 +								
	Chamber	coeff.,Kv,cal/s/K	temperature,					-	80				
Cycle time,t,hrs	pressure,Pch,Torr	/cm^2	Tsh,C	Tproduct,C	*	· * * * * *	· * * * 	* * * *	- ⁻				delta T
0	0.15	4.993E-04	-50	-37.19993	-10 +				70 🚆			9	-1.318002
0.83333	0.15	4.993E-04	0	-27.2231				· · · · · · · · · · · · · · · · · · ·	l s	She	elftemperature.	Tsh.C 5	2.7073785
2	0.15	4.993E-04	0	-19.57967	U,			-	60 2		ttom	1	1.6344016
3	0.15	4.993E-04	0	-17.30152	g -20 +	×			≧	100		9	1.2575239
4	0.15	4.993E-04	0	-15.85764	1 E	\mathbf{v}		-	- 50 5		fical	4	0.9987201
5	0.15	4.993E-04	0	-14.81308	ã o l	\wedge			5		ibl_surf	1	0.7999957
6	0.15	4.993E-04	0	-14.00213	E -30			-	40 -		of removed wate	я г 3	0.6381418
7	0.15	4.993E-04	0	-13.34393	- i 🎵				5	Pro	seure mTorr	3	0.5013725
8	0.15	4.993E-04	0	-12.79295	40			-	- 30 문		ssure, miton	8	0.3828334
9	0.15	4.993E-04	0	-12.32109	-40 -				l is	Pmi	in	3	0.2781721
10	0.15	4.993E-04	0	-11.90982				-	20			3	0.1844457
11	0.15	4.993E-04	0	-11.5463	-50 -							9	0.0995699
12.3	0.15	4.993E-04	0	-11.13004	50			-	- 10			3	-2.437E-05
13.3	0.15	4.993E-04	0	-10.84538								6	-0.0697603
14.3	0.15	4.993E-04	0	-10.58603	-60 -	, 			- o			6	-0.134476
15.3	0.15	4.993E-04	0	-10.34817	0	5	10	1	5			3	-0.1948412
16.3	0.15	4.993E-04	0	-10.12878								8	-0.2513982
17.3	0.15	4.993E-04	0	-9.925443		Lin	ne,hrs					5	-0.3045931
18.3	0.15	4.993E-04	0	-9.73619								9	-0.3547981

Pfizer Confidential – For internal use only - 14

Estimation of Cake Resistance from the Cycle Data:

Kv and resistance from one product vial

$$(\frac{dq}{dt})_{i} = K_{V}(P)S_{out}(T_{shelf}-T_{pr_{bottom}})_{i} \qquad \text{Eq.1}$$

$$(\frac{dm}{dt})_{i} = (\frac{dq}{dt})_{i}\frac{1}{\Delta H_{s}} \qquad \text{Eq.2} \qquad \text{If Kv=const when P}_{ch}=const, \text{ then mass of sublimed ice at } t_{i}$$

$$Combining_{\text{Eq.1 and Eq.2}} \implies (m_{ice})_{vial} = \int \frac{d(m_{ice})_{vial}}{dt} = \int S_{out}K_{v}\frac{(T_{shelf}-T_{pr_{bottom}})}{\Delta H_{s}}$$

$$\implies K_{v} = \frac{2\Delta H_{s}(m_{ice})_{vial}}{S_{out}\sum_{i=1}^{n}(\Delta T_{i} + \Delta T_{i-1})(t_{i} - t_{i-1})} \qquad \text{Where mass of ice in the vial is known}$$

Calculations of cake resistance

$$R_{i} = S_{in} \frac{(P_{subl_surf} - P_{chamber})}{(\frac{d(m_{ice})_{vial}}{dt})_{i}}$$

$$T_{subl_suf} = T_{pr_bottom} - \frac{dq}{dt} \frac{L_{ice}}{\lambda_{frozen}} \qquad L_{ice} = \frac{(V_{fill} \rho_{sol} - \frac{m(t)}{\varepsilon})}{\rho_{ice} S_{in}} = h_{max} - h_i$$

SCIENCE MANGING

 $(P_{subl_surf})_i = \exp(24.01849 - \frac{6144}{T_{subl_surf} + 273})$

Pfizer Confidential – For internal use only - 15

Generation of Model Inputs: Vial Heat Transfer Coefficient (Kv) Measurements

Weight loss ≤30% of total mass

Weight loss ≥ 50% of total mass – Heat transfer surface area is reduced: Underestimation of Kv value.

Kv of 10 ml Schott vial

Edge effect measured for a 6 m² GMP dryer

- nzer conndential – For internal use only - 16

Sublimation Test on Lyomax 42

Shelf temperature

Product temperatures

25

20

60 trays x 16.6 L~1000L filled. Actual weight loss during sublimation ~352 kg.

Test 7.5: minimum controllable pressure

$$\frac{dm}{dt}\left(\frac{kg}{hr*m^2}\right) = K_{Tray}B(T_{shelf_surface} - T_{ice_bottom})$$

15

Run time.hrs

Black bags were used in experiment

WORLDWIDE RESEARCH & DEVELOPMENT

10

60

40

20

1 Temperature,C

-40

-60

-80

Π

Chamber pressure

Condenser pressure

5

Pmin=f(dm/dt) =A+B*SR+C*SR^2 A,B,C are inputs in lyo template When Tcond>-40C, SRmax-input in template

Pfizer Confidential – For internal use only - 17

Alternative to sublimation tests: CFD modeling of mass flux

Effect of valve gap

-> Chamber pressure is highest at the lowest valve gap.

-> The higher (than expected) pressure in the 18 inch case might be because of sonic conditions in the duct

ect of valve gap

Effect of duct diameter

-> At the same Sublimation rate of 75 kg/hr, the chamber pressure dropped considerably with the increase in duct diameter by two inches.

Effect of condenser temperature

→As expected lowest chamber pressure corresponds to lowest condenser pressure.

Prof. Alina Alexeenko, Nikhil Varma-Purdue University

What is Needed to Generate Inputs into Primary Drying Model?

- Cake resistance
 - Cycle traces
 - TDLAS
 - MTM software
- Vial heat transfer coefficients
 - Vials of interest, water, temperature sensors, balances
 - 1 week to generate data at scale
 - TDLAS (potentially one cycle)
- Minimum controllable pressure and maximum sublimation rate
 - Trays, plastic bags, high quality water, temperature sensors to record shelf surface temperature and ice temperature
 - 1 week of experiments (3 days if freeze-dryer is not well

Advantages and Benefits of Modeling

- Enables fast calculations of primary drying time and maximum product temperature time and cost savings!
- Supports evaluation of different pressure and shelf temperature combinations to optimize product temperature profile (targeting the shortest drying time)
- Helps construction of a design space for a particular product with regard to the process parameters
- Assists in the identification of potential impact on the product at any combinations of shelf temperature/pressure/time (useful for the assessment of process deviations)
- Identify the effect of process conditions on any changes in heat and mass transfer (for example, as in the case of microcollapse)

Allows implementation of equipment limitations into cycle design

Applications of Modeling to Freeze-Drying

Process Optimization using the Primary drying model (Janssen)

Results – Cycle optimization alternative

<u>3 day cycle</u> Constant chamber pressure and shelf temperature

~39 hours

<u>Variable cycle</u> Constant chamber pressure and variable shelf temperature

~34 hours

PHARMACEUTICAL COMPANIES

Jansser

Modification of Template at Janssen (D. Latshaw)

		B	C	D	E	F	G	н			K.
1	1999			1111	Calculation of te	mperature profile based on pro	duct properties and vials o	haracteristics			
				1						9	dama and
2	Input parameters	Kolas	Formalation components	Concentration (maint)	Wist hast transfer coefficient &	Karach "P(Tox)//les "P(Tox))	Cake resistance Ro	E-A-E"Man WieC"Man))	Sublimation rate (max)	ta/kr	Minimum controll
3	Vial canacite al	20	Protein	5	3		A		SPmay	3 363606	324 Pebleurimin mT
4	Inner vial Diam. cm	2.951	Manitol	4		37600.0	B	75 18004103		0.000000	3.3 Pmin
	Onter nial Diam. cm	0.975	Success	4		2.50000	C C	5.507574800			1 A
r R	les descits ales*3	0.918	Raffar	155	Hast coaling factor	23.00	Decistores scoling foster	5,501514022	1		B
2	Densite alen *3	103	Dane	1.22	neac scaling factor		I nesistance scaling factor				C
•	Eill and and all	1.00	O day day and a day day	diaman di	Colored an effective development		Online days (Colored and deal	diam'r	00 allowed at a data of the a diseased by	i di secondo sete	<u> </u>
0 0	Fill Folume, mL	0 000110	Colored concentrations should b	e adjusted	Colored coerricients should be adjusted	0 	Desistence coerricients should be	adjusted Id by 4 been such as d	SR allowed should be adjusted b	ased on equipment	Colored as received as
0 0	Des enks bright em	0.030440			rieat scaling factors should be i for cen	ter vials and increased for	Resistance scaling factors shou	id be i base cycle and Nafirea	characterization		Colored coerricients s
	Dry cake neight,cm	0.020231022			edge of corner viai		adjusted for optimization of tra	nsrers			equipment characteriza
1 9	Teritical (collance)	21000							-		
6 0	Tentera (conapse)	0.00250			DEC	11178					
2	Lambda	0.00350		2000 C	RE3	0113					
4			S	olve!	Max product temperature	-33.1					
5 ¢	Colored values should be	e adjusted			Total primary drying time [hrs]	<u> </u>	No. The sector because	I MERTINE CONTRACTOR			
•	A	F 037675 00			Minimum controllable pressure	20.4	INOTE: I his needs to be combine	a with ALL vial type contributions			
1	sum of squared error	5.011000-03	11		2						
8		A CONTRACTOR OF THE OWNER OF THE OWNER		A CONTRACTOR AND A PARTY	-						
3		Constant chamber pressure [1 orr		Constant shelf temp [C]	0		/	100			
20		0.05		-20							
1					+			+ 90			
		Allelin	B	01 . M	-10						
*	Contration of the	Grander pressure	feat transfer coeff.	Shell temperature	12:08		/	- 30	ř.		
22	Gycie ame, c, ars	(1011)	Coursekice 21	[0]	+ 1	/			B Shall fame	aratum (PC) P	152 and the state at the
	0	0.05	2.1415-04	-50	+ -20			+ /u	5	500 B P	and the second second
24) 36		0.05	2.1412-04	-20	Η ο —			50	2		
22 16	4	0.05	2.1415-04	-20	H &	/		T 00	a reduct		
20 37	0	0.05	2.141E-04	-20	┨┋_╖┟╻╻╻			50	E TO ICION		emperature at sunace
-1) 8 -	10	0.05	2.141E-04	.23	H 🖫 💛 👬 🔭 👬	. * * * * * * * * * * * * * * * * *	******	*****	Ę		
99	12	0.05	2 1415-04	-23	ti ê II .	*****	***********	10	0	Weiter and	100000
20	14	0.05	2.141E-04	.03	H 🗄 🛛 🛹			19	% of remo	ved water -B-Pres	sure (mTorr)
1	16	0.05	2 141E-04	-23	-40	1		30	9		
12	18	0.05	2 1415-04	-23		/		T ***	È.		
3	20	0.05	2 1415-04	-23	H 1/	1		- 20	Pmin		
4	22	0.05	2 141E-04	-23	-50	/					
15	24	0.05	2.141E-04	-23				10	17		N.:
16	26	0.05	2.141E-04	-23	# //			19			
1	28	0.05	2,141E-04	-23	-50						
8	30	0.05	2.141E-04	-23	T	10 20 30	40 50 60	70 80			
3	32	0.05	2,141E-04	-23	π °			SC (35)			
0	34	0.05	2.141E-04	-23	1	Time,	hours				
		0.05	0.445 04								

Use of Model to Optimize Manufacturing Process

Name	Production optimiz	zation with constant	chamber pressure a	nd shelf temperature						
Goal	Determine what vi Minimize unused	al and cycle combin scheduling hours	ation can be used to	maximize the amount of	product lyophilized for the give	en 5mL fi	Il volume, formulation, an	d scheduling time		
Conditions	Do not exceed the Do not allow the n 480 hours of lyoph	critical collapse tem ninimum controllable nilization time availib	perature of the cake pressure to exceed le on a single lyo	before the product is 100 the chamber pressure a	% dry t any time during the cycle					
Directions	Determine a vial to Adjust the constar Hit the "Solvel" but Check product ten Check minimum of Copy the length of	o use for the model (ht shelf temperature tton to predict the pro- nperature at 100% d controllable pressure your cycle (F15) and	from table below) an and chamber press oduct temperature pr ry against critical coll a against chamber pu d enter it in the grey b	d transfer the vial capacit re cells (B20 and D20) to ofile apse temperature (F14) ressure (F16) ox below corresponding to	y, inner diameter, outer diame o manipulate the variables to the vial type you chose (121:	eter, and :129)	# of center vials (B3, B4,	B5, and B11) to the Exer	cise 3 Data spreadsheet	
Vial Type	Vial capacity (mL)	Inner diameter (cm	Outer diameter (cm	Approx. # of center vials	Product lyophilized (ka/run)		How long is your cycle?	# of possible runs	Unused scheduling hours	Total product lyophilized (kg)
2r	4.0	1.54	1.6	103971	5199		100	4	80	20794
4r	6.0	1.54	1.6	103971	5199		100	4	80	20794
6r	10.0	2.13	2.2	54350	2717		100	4	80	10870
8r	11.5	2.13	2.2	54350	2717		100	4	80	10870
10r	13.5	2.33	2.4	45420	2271		100	4	80	9084
15r	19.0	2.33	2.4	45420	2271		100	4	80	9084
20r	26.0	2.93	3.0	28722	1436		100	4	80	5744
25r	32.5	2.93	3.0	28722	1436		100	4	80	5744
30r	37.5	2.93	3.0	28722	1436		100	4	80	5744

Vary vial size and fill volume to optimize commercial outcome

HARMACEUTICAL COMPANIES F **Johmon Johmon**

Estimation of Product Temperature Profile using the Primary Drying Model (Biogen)

Compare Experimental Data to LYO-Calculator Generated Data (exp #1)

Biogen.

Cherie Parkhurst-Lang, Suresh Nulu, Geetha Govindan

Template Modification at Biogen (S. Nulu)

Δ	B	C	D	F	F G	H		K	1	M	N	0
Calculation of temperature profile based on product properties and vials characteristics												
INPUT Parameters INPUT For			nulation components	INPUT vial heat t (use d	transfer coefficient atabase)	INPUT cake resistance data (use database)		Sublimation rate (max) (use database)		Minimum co (us	ressure	
vial capacity,ml	10	Component	Concentration, mg/ml	Kv=a+b*P(To	orr)/(1+c*P(Torr))	R=A+B*	h(cm)/(1+C*h(cm))			Α	5.12	
Din,cm	2.14	Protein	50	a 0.00016		A	4.68	SRmax	0.0119	В	18.83	
Dout,cm	2.374	mannitol	21.07	b	2.86E-03	В	273.16	SR allowed	3.3000	С	0.00	
ill volume	2	sucrose	50	с	3.52889	с	35.20			Pch(curent) min,mT	500.00	
Number of vials,N	6	buffer	3.9	Heat rad (odge)	1	GMP	1.00			Pmin	5.34	
Critical (collapse)	-17	Add all othe	er excipients into Buffer	factor		factor						
Density,g/cm^3	1.02			Keep Edge Factor 1 for cent		Lab Sca Leave it a	ale Vs Commercial. Is 1 if you don't know	Sublimation rate (max) & Minimum Controllable Pressu Equip Limits. They make sure that our cycle is not desi over the equip limits				sure are esigned
Vater content	0.87503											
dry cake,cm	0.617832038	3	Directions to use this	s sheet (Inputs only	in Shaded Cells)							
ce density,g/cm^3	0.918		Step1:	Input parameters	in above tables							
ambda	0.00358		Step2:	Input values in A, B, C columns below			Sum 1.133E-10	Press Solve (n	nultiple time	es if necessar	/) until J13<	1e-6
			Step3:	Solve until Sum <	Solve until Sum < 1e-6				-			
			Primary Drying Tim % Water Removed Primary Drying Time (hrs	e From Model 99.42) 52.00			SOLVE					
Cycle time.t.	Obember 1	Shelf Ter				Tp &	%H2O remove	dysprimar	ydrying	time		1
0 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ei ei ei ei ei ei ei ei ei ei ei ei ei e			25 40 45 50 Time(hrs)	50 60 65	70 78 8	100.00 + 00.00 + 00	SR1001% of removed water Poimforr)	
HANDO NOT ADD AN	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		126.96 125.26 104.90 122.24 123.26 122.26 122.28 122.28 122.28 142.69 122.28 144.69 125.28 146.09 125.28 146.09									

Model Limitations and Challenges in Implementation

- Limited accuracy (+/-1°C, 20% error in primary drying time)
- Significant error in prediction of time for the products with high resistance (up to 40 Torr*hr*cm^2/g at 1 cm)
- Requires generation of equipment specific inputs
 - Vial heat transfer coefficient
 - Edge effect
 - Minimum controllable pressure
 - Maximum sublimation rate
- Requires generation of product specific inputs
 - Cake resistance for a formulation
- Cake resistance as function of process conditions (microcollapse, degree of ice nucleation

Industry Perspective on the Use of Modeling in Freeze-Drying

- Modeling could significantly reduce efforts in cycle optimization, transfer and scale up.
- Companies are currently investing in the characterization of dryers and container-closures (Kv, Pmin, SRmax).
- Companies are harmonizing modelling approach, improving primary drying template, and sharing experiences.
- Regulatory agencies will be continuously updated on this initiative.
- Through consortiums (BPOG and LyoHUB), companies
 Will continue the advancement of application of modeling